logo2logo2logo2logo2
  • News
  • Vie Lycéenne
    • Lycées numériques
    • Vie scolaire
    • Méthodes
    • Orientation et métiers
    • Objectif Bac
      • Objectif Bac français
      • Objectif Bac histoire
      • Objectif Bac philo
  • Société
    • Citoyenneté
    • Santé éducation
    • Autonomie
  • Interview
  • Le labo
    • Science pour tous
    • Le saviez-vous ?
    • Femmes de sciences
  • Culture
    • Lectures
    • Bd
    • Culture pop
    • Films/Séries/Dvd
    • Loisirs
  • Quiz
✕

L’intelligence artificielle peut-elle être créative ?

8 janvier 2019
 
Vous êtes-vous déjà demandé comment fonctionne une intelligence artificielle ? Ce qui la différencie de l’intelligence humaine ? Et si elle sait faire autre chose que de gros calculs ? Pour y répondre, David Louapre nous explique sur sa chaîne YouTube Science étonnante comment l’intelligence artificielle progresse et commence à montrer des signes de créativité.

Ça ne vous a pas échappé, les ordinateurs et les machines sont capables de faire de plus en plus de choses… Toutefois, ce que font généralement mieux les processeurs que les hommes, ce sont des tâches mécaniques : faire des gros calculs, manipuler des tableaux de données gigantesques… Des tâches que les humains peuvent parfaitement réaliser, mais en prenant (beaucoup) plus de temps.

Les ordinateurs ne font donc, pour l’instant, que nous imiter, mais ne créent rien de véritablement nouveau. Et la créativité, tant artistique que scientifique, semble rester l’apanage des humains.

Sauf que… Les machines sembleraient depuis peu être capables de se montrer créatives. Pour l’illustrer, David s’est intéressé aux IA développées par de gros constructeurs pour tenter de battre des joueurs d’échecs et de go.

Deep Blue vs Kasparov

En 1997, l’ordinateur Deep Blue d’IBM a été la première machine à battre ce qui se faisait de mieux en matière de cerveau humain jouant aux échecs : le champion du monde Garry Kasparov. A l’époque, beaucoup de gens ont perçu ce moment comme celui où, symboliquement, les machines prenaient pour la première fois le dessus sur l’intelligence humaine.

Pour autant, Deep Blue n’était pas une machine créative ni une véritable intelligence artificielle : sa force résidait dans sa puissance de calcul, qui lui permettait d’envisager un grand nombre de coups (les siens et ceux de l’adversaire) et de dépasser la capacité du cerveau humain. Deep Blue pouvait ainsi tester 200 millions de coups par seconde, et anticiper jusqu’à une dizaine de coups à l’avance.

Pour vous donner une idée de ce que cela représente, il faut savoir qu’aux échecs il existe en moyenne une vingtaine de coups possibles à chaque tour de jeu. Si un joueur envisage 20 coups, ainsi que les 20 réponses possibles de l’adversaire pour chaque coup, cela fait 400 possibilités à examiner (20 x 20). Pour calculer deux coups à l’avance, c’est 20 multipliés 4 fois (20 exposant 4), soit 160 000 possibilités. C’est ce qu’on appelle une croissance exponentielle.

Cela étant, prévoir les coups, c’est bien, mais choisir les plus intéressants demande des compétences d’évaluation, en particulier pour savoir sacrifier des pièces à bon escient – une problématique que vous connaissez bien si vous jouez aux échecs.

Chez Deep Blue, cette capacité avait été programmée dans la machine par des humains. La machine faisait donc des milliards de calculs, et des choix en fonction de critères établis par des humains. Ce qui fait dire à David que, malgré la victoire de Deep Blue, on était assez loin de la défaite de l’intelligence humaine…

Mais ça, c’était il y a 20 ans... Il y a quelques années, une machine a battu l’intelligence humaine, mais au jeu de go cette fois-ci.

De l’instinct à la machine

Au jeu de go, un joueur dépose à son tour une pierre sur une intersection de la grille. On marque des points en capturant des pièces adverses qui sont encerclées.
 
 
La grille du Go fait 19 par 19, soit 361 intersections, ce qui implique, en début de partie, 361 coups possibles. En cours de partie, si un joueur a, disons, 300 possibilités, et qu’il cherche à prévoir une réponse possible de l’adversaire pour chacun de ses coups, cela lui ferait 90 000 possibilités à imaginer !

De plus, il est très difficile en cours de partie d’évaluer sa position, comme, lorsqu’aux échecs, on sacrifie une pièce pour espérer obtenir un gain plus important. Du coup, les meilleurs joueurs fonctionnent beaucoup à l’instinct.

Pour toutes ces raisons, les programmes de Go ont pendant très longtemps été incapables de rivaliser avec les joueurs humains.

Mais en 2016, le programme AlphaGo de Google Deep Mind a battu le meilleur joueur du monde, Lee Sedol, et il l’a fait en jouant de manière totalement surprenante.

L’IA implantée dans AlphaGo est basée sur le Deep Learning , ou apprentissage automatique. Cette méthode consiste à apprendre à un algorithme à faire quelque chose à partir d’une grande quantité de données qui lui servent d’exemples. C’est ainsi qu’AlphaGo a utilisé une base de données de 160 000 parties jouées par des grands maîtres du Go, soit plus de 30 millions de coups joués. En plus, ses algorithmes simulent le fonctionnement de réseaux de neurones, pour l’aider à faire les meilleurs choix. Cela suffit-il à en faire une véritable intelligence ? Et surtout à se montrer créatif ?

Voici la réponse : au 37e coup de la deuxième partie l’opposant à Lee Sedol, AlphaGo choisit de poser une pierre sur un endroit complètement inattendu. Tellement d’ailleurs, que les commentateurs de la partie, retransmise dans le monde entier, se méprennent sur son choix. Ils croient même un instant à une erreur ! Car le coup surprenant qu’AlphaGo a joué, aucun grand joueur ne l’aurait tenté – cela ressemble même à une erreur de débutant. Lee Sedol, lui aussi, a du mal à croire ce qu’il voit.

Et pourtant, ce coup aura une grande influence sur la fin de la partie, remportée par l’IA. Conclusion : Alpha Go a véritablement innové. Il a été créatif.

AlphaGo atomisé par AlphaZero

Les choses ont encore été plus loin par la suite. Comme on l’a dit, les algorithmes d’AlphaGo ont « mouliné » en se servant des données qu’il avait apprises (apprentissage supervisé). Or, aujourd’hui, des algorithmes évoluant selon un système d’essais erreur/réussite sont capables d’apprendre de façon autonome (apprentissage par renforcement) : on ne fournit à l’algorithme que les règles du jeu, et on le laisse s’entraîner et progresser en jouant contre lui-même.

C’est ainsi que les chercheurs de Deep Mind ont créé AlphaZero, un programme capable d’apprendre à jouer tout seul à des jeux abstraits comme les échecs ou le go sans aucune intervention humaine. Pendant deux semaines et en utilisant 5 000 processeurs, AlphaZero a joué contre lui-même 140 millions de parties de go. Après quoi, on l’a fait jouer contre AlphaGo… qu’il a atomisé 100 parties à zéro !

Idem aux échecs : AlphaZero a joué 44 millions de parties contre lui-même (en 9 heures), puis on l’a opposé au meilleur programme d’échecs du monde, Stockfish (qui, au passage, est bien meilleurs que DeepBlue, qui a battu Kasparov, si vous suivez un peu…). Résultats sur 1 000 parties : 839 nuls, 6 victoires de Stockfish, et 155 victoires pour AlphaZero.

Agressif, créatif

Au-delà de ce chiffre, un détail est important : alors que Stockfish est capable d’évaluer 60 millions de situations par seconde, AlphaZero en évalue « seulement » 60 000 par seconde… Cela signifie qu’il est capable de choisir avec une redoutable efficacité, dans l’arbre complexe des coups possibles, les coups les plus prometteurs, au lieu de tout explorer bêtement en recourant à la puissance de calcul.

Mieux encore : non seulement AlphaZero a redécouvert lui-même toutes les ouvertures classiques des échecs, mais, en cours de partie, son comportement est assez différent de ce que font les humains. Il est plus agressif, sacrifie plus facilement des pièces, mais à l’arrivée, il gagne.

Conclusion : AlphaZero est bel et bien une intelligence artificielle capable de créativité. Ça donne moyennement envie de revoir Terminator, non ?

Fabien Cluzel

 
Partager sur :

Vous aimerez aussi :

19 novembre 2024

Quels sont les animaux les plus menacés ? 


Lire
21 octobre 2024

Les êtres vivants les plus proches de l’homme 


Lire
24 septembre 2024

Comprendre la relativité restreinte


Lire
22 mai 2024

Le multivers existe-t-il ailleurs que dans la pop culture ? 


Lire

Vivre au Lycée

Une diffusion originale et exclusive en partenariat avec le Ministère de l'Education nationale : gamme de magazines pour les jeunes dès 15 ans, avec des titres dédiés et spécialisés par niveau d’études à destination des lycéens français.

Magazine Vivre au Lycée

© EPICURE WEB 3.0

En savoir plus

A propos de nous

Charte de la protection des données

Mentions légales

Crédits

Publicité

Articles récents

  • Indiana Jones et le Cercle ancien : le jeu de l’année ?
  • Sonic 3
  • Le Service national universel bien noté par les jeunes volontaires
  • Sonny Boy (Al Pacino, éditions Seuil)
  • Étudier en Australie : l’essentiel 
2020 vacval. Tous droits réservés. Epicure 3.0